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T W O - P H A S E  F L O W S  O F  I N C O M P R E S S I B L E  C O N D E N S E D  M E D I A  A N D  G A S  

V .  I. N a l i m o v  UDC 532 

A model of weakly compressible media based on the assumption of small volume concentration 
of gas is developed for the description of flows of powder mixtures. A strong shock-wave 
approximation is used to describe the dynamics of strong discontinuities. Various approximate 
formulations of the problem are deduced from a variational principle by restricting the class of 
function within which a critical point of the action functional is sought. 

From the equations of motion for mixtures consisting of an incompressible condensed medium and a 
gas, approximate dynamic equations axe derived using a one-velocity approximation with common pressure 
of the phases (see [1] and bibliography there) and the assumption that  the volume concentration of the gas 
in the mixture is small. Shock-wave propagation in a mixture of an inviscid fluid and a gas is described using 
an approximation of strong shock waves that  coincides with the model for weakly compressible media derived 
in [2]. For flows without  phase transitions, the shock-wave velocity in this approximation is proportional to 
the velocity of the medium past the front. A comparison with experimental da ta  for metal powders [3] shows 
that the model of strong shock waves gives a satisfactory approximation for shock-wave velocities comparable 

with the velocity of sound in a metal. 
For one-dimensional motion of a mixture with strong discontinuities, we prove a variational principle 

that allows us to  employ the Galerkin method to formulate various models in which a solution is obtained 

from a system of ordinary, differential equations. 

1. E Q U A T I O N S  O F  M O T I O N  

N o t a t i o n .  We assume that particles of the gas and the condensed medium that  form the mixture are 
points. The condensed medium will be called the first phase, and the gas will be referred to as the second 

phase. 
The volume dV occupied by the mixture is represented as the sum of two volumes: dV = dV1 + dV2. 

Here dV/are Lebesgue measures (volumes) occupied by the carrier medium and the gas. We assume that for 

every point of the  mixture, the following limits exist: 

lim dV~ 
dV--*O d - Y  ~ OLi' ~ -~- OL2 ~- 1. 

The quantities a l  and a2 are called the volume concentrations of the corresponding phases. 
We also assume ' tha t  the functions Pi, P~, Ti, Civ, and ~ei are defined at every point of the flow 

domain and represent the density, pressure, temperature, specific heat at constant volume, and the thermal 

conductivity for the condensed medium (i -- 1) and the gas (i -- 2), and the function a~j = -piSij + v[j (5ij is 
the Kronecker symbol) is the stress tensor of the condensed medium. The  mass of the i th component of the 
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mixture contained in the volume dV is equal to pidVi. The density of the mixture is given by the equality 

pdV = pldV1 + p2dV2, p = alPl + a2P2. The  quantities 

pidVi aip._....2i f~i + 32 = 1 (1.1) 
/3i= pd----~ = P , 

are called the mass concentrations of the  mixture  components. 

R e m a r k  1. Since the mass of each phase in the moving volumes is conserved, the mass concentrations 
in the particles are constant. 

Next,  it is assumed that  the equat ion of state for the gas has the form 

p~ = f(p~, T2). (1.2) 

In particular, for a perfect gas, P2 -- p2RT2. The condensed medium is considered incompressible: Pi = const. 
We note tha t  for specific volumes dvi = 1/pi and v = l /p ,  the following equalities are valid: 

v = ~3ivi + 132v2, alV = j3ivi, a2v =/32v2 = v - 3ivi .  (1.3) 

S t r e s s  T e n s o r  a n d  T h e r m a l  C o n d u c t i v i t y .  To determine the  stress tensor of the mixture aij = 
-Pi~ij +'rij, we consider a surface element dS = dSi +dS2 (dSi is the  surface measure of i th  phase) with the 
normal n and set 

3 ) d S =  - ( P l  dS1 3 ( - + .,jn  + p2 + ds l ,  
j=l j=l 

where i ---- 1, 2, and 3. Arbitrarily extending the surface element to  a cylinder of height dl and taking into 
account tha t  dS i /dS  = dVi/dV = ai, f rom the preceding equality we obtain p = alpl  + a2P2 and rij = alr[j. 
In other words, the volume-averaged and surface-averaged values coincide [1]. 

In what  follows, we,assume that  in a volume element the pressures in each phase coincide: Pl -- p2 -- P- 
The stress tensor of the mixture has the form 

! 
aij = --paij + alr~j = -pSij + ~31Prij/P1. (1.4) 

The thermal  conductivi ty of the mixture  is defined similarly: 

~e = ai m~i + c~2~2 = 031p/pl )oel +/32(I --/31p/pl)ae2. (1.5) 

I n t e r n a l  E n e r g y .  a n d  E n t r o p y .  The internal energy of the mixture is defined by the equality 
e = t3iei + ~32ee, where si = CviTi. According to the first law of thermodynamics  dQ1 + dQ2 = d(31ei) + 
d(/32eg) +p  dr, where dQi is the increase in quanti ty of heat for each component  per unit mass of the mixture. 
With allowance for Remark 1 and Eq. (1.3), the last relation can be wri t ten as 

dQ1 +dQ2 = ~id~l + ~2 d~2 +~2pdv2.  (1.6) 

The  flow of the mixture depends greatly on the heat-transfer processes. Below we consider two models 

for describing two-phase media. 
Case A: Heat-Non-Conducting Condensed Medium and Gas. Since there is no heat exchange between 

the phases, then,  according to (1.6), the following equalities must hold: dQ1 =/31 de1, dQ2 = 32 (de2 +p dv2) = 
32T2 ds2, where s2 is the entropy of the second phase. 

R e m a r k  2. If external sources of heat  are absent, the change in the internal energy of the first phase 

is equal to the  work done by the forces of internal friction. 
We define the entropy of the mixture  by the equality s -- j32s2. For a polytropic gas, 

P/Po = A(s, 32)(p2/p~.o) ~. (1.7) 

R e m a r k  3. If external sources of heat are absent, then for continuous flows, the entropy in the 

particles is conserved and A(s, 32) = 1. 
Case B: Heat-Conducting Condensed Medium and Gas. In this case, we assume that  in any volume 

element, the tempera tures  of both phases are identical. The equality Cvp dV = Cvlp: dV1 + Cv2P2 dV2 defines 

the specific heat  of the mixture: 
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By definition, dsi = Cvi dT and dQ = dQ1 + dQ2 = C,  dT +/32pdv2 = t~ lCv l  dT + ~2Tds2. 
entropy of the mixture  is given by s -~/31Cvl In T + r 

As in the case of heat-non-conducting phases, for a polytropic gas, 

p/po = B(s, #2)(p2/p2o) ~', 

where 

7. = i +/32R/C~. 

(1.8) 
Therefore, the 

(1.9) 

(1.10) 

R e m a r k  4. In contrast to heat-non-conducting media, the entropy of the mixture increases (ds > O) 
in the presence of  internal friction: B(s,/32) = 1, if the entropy in the particles is constant. 

Laws  o f  C o n s e r v a t i o n  of  Spec i f i c  C o n c e n t r a t i o n ,  M a s s ,  a n d  M o m e n t u m .  The above reasoning 
shows that the mixture  of an incompressible condensed medium and a gas can be treated as a condensed 
medium with velocity field u,  density p, and the stress tensor 6rij defined by Eq. (1.4). According to Remark 1, 

where the opera tor  d/dt  = O/Ot + ( u .  XT) is the 
For flows without strong discontinuities, 

torm 
0_p 
Ot 

d/32 
= 0 ,  ( 1 . 1 1 )  

dt 
total derivative with respect to time. 
the laws of conservation of mass and momentum have the 

+ p d i v u  = 0; (1.12) 

du 1 

where f is the body  force, r is the stress tensor deviator, and, by definition, 

3 0 
(d iv  (/31pv))/= Z ~ x j  (/3iPrij). 

j = l  

1 
- div  (/31p~') + f ,  (1.13) 

PP1 

Laws  o f  C o n s e r v a t i o n  o f  E n e r g y .  It is known that  the total  change in the kinetic energy of the 
medium results from the work done by body forces and surface forces in a volume element. The  change in 
the internal energy e is related to the work done by friction forces on changing the volume of the medium 

and to heat-transfer processes: 

de 
p ~-~ + p V -  u - c~2G = V .  0, (1.14) 

where O is the current  density of the heat transferred through a unit area of isothermal surface per unit time 
3 Oui 

and G = Z rij ~ x j  [r* is the dissipative (viscous) component of the tangential stress tensor]. 
i , j= l  

The internal  energy varies differently, depending on the heat-conduction processes. We consider two 

cases. 
Case A: Heat-Non-Conducting Condensed Medium and Gas. According to Remark 2, the work done 

by the forces of internal friction is equal to the change in the internal energy of the first phase. Therefore, 

Eq. (1.14) splits into two equations: 

d d 
p-~ (/31el) - a l G  = O, p -~  (/32z2) + p V  " u = O. 

Taking into account the law of conservation of mass concentration (1.11) and the definitions of the 

specific internal energies zi = CviTi, and (1.1), we obtain 

Cvl dT1 P G = 0; (1.15) 
dt pl 
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C dT2 & v2p-j / -  + p v .  u = 0. (1.16) 

Case B: Heat-Conducting Condensed Medium and Gas [1]. In this case, equalities (1.5) and (1.8) 
define the thermal conductivity and the specific heat at constant volume of the mixture. Letting ~ = C v T ,  

from (1.14) we obtain the following equation for the temperature: 

d T  C,,p--~ + p V .  u - a 2 G  = V- (~eVT). (1.17) 

In view of (1.3), the equation of state of the mixture (2.2) can be written as 

P = g(~2, P, T), (1.18) 

where T -- T2 for heat-non-conducting phases. 
R e m a r k  5. If the entropy in the particles is conserved, then for a polytropic mixture, Eqs. (1.3), 

(1.7), and (1.9) lead to the law of conservation of entropy: 

d 
d-'t [(v - -  fllvl)kp] = 0 ,  (1.19) 

where k = 3, for the case A and k = ~', for the case B. The adiabatic exponent is defined by formula (1.10). 
We note that in the case of heat-conducting phases, the flow is isentropic if the stress tensor is spherical 

and the thermal conductivity is negligible. 
R e m a r k  6. Equations (1.11)-(1.13), (1.15), and (1.16) and the equation of state (1.18) represent a 

complete system of equations for the mass concentration, velocity field, pressure, and temperature of each 
mixture component in heat-non-conducting phases. 

Equations (1.11)-(1.13) and (1.17) and the equation of state (1.18) are a complete system that defines 
the flow parameters in the case of equal temperatures of the phases. 

R e m a r k  7. For isentropic flows, the mass concentration, the density, and the velocity field are obtained 
from Eqs. (1.11)-(1.13), the equation of state (1.18), and the law of conservation of entropy (1.19). 

R e m a r k  8. For isentropic flows, the velocity of sound in the mixture is calculated from the formula 
(see also [1]) 

C ~  

x"/o~2p / 

where co is the local velocity of sound in the gas. 
For heat-non-conducting phases (k = 3') with specified p2, the velocity of sound in the mixture c(a2) is 

equal to the velocity of sound in the gas co if a2 = i and a2 = a~, c(c~2) < co if (~ < a2 < I, and c(c~2) > co 
if a2 < a~. Here (~ = (Pl - IPl - 2p21)/(2(pl - P2)). The minimum velocity of sound in the mixture 

- -  C O 

is attained for c~2 = pl/(2(pl - P2)) (P2 < Pl). If P2/Pl  << 1, then c. ~- 2 v / ~ p l c o  << co. 
In i t ia l  a n d  B o u n d a r y  Condi t ions .  To single out a unique solution of the equations describing the 

dynamics of mixtures, it is necessary to specify initial and boundary conditions. We assume that at t = 0, the 
velocity field u0, the mass concentration fi2 (or ill), and the density of the gas P20 are known. The volume 
concentration and the density of the mixture are obtained from the formulas c~2 = ~2 .P l / (~ .P l  + ~lP2) and 
P = P lP2 / (~2P l  +~lP2). In addition, the temperatures T10 and T20 of each phase must be given. The pressure 
is determined from the equation of state (1.18). 

On the rigid walls, the condition of no flow through the boundary must be satisfied: the normal velocity 
of the particles adjacent to the wall must coincide with the normal velocity of the wall. This condition suffices if 
the first phase is an inviscid incompressible fluid. For other condensed media, additional boundary conditions 
appear. If the condensed medium is a viscous incompressible fluid, the no-slip condition must be satisfied on 
the rigid walls: the velocity of a fluid particle on the wall is equal to the velocity of the wall. For a plastic 
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medium, the friction law must be satisfied on the wall (for exaraple, the Amanton-Coulomb law: the density 
of the friction force on the rigid wall is proportional to the normal stress and its direction is opposite to the 
motion of particles of the medium). 

On the free boundaries, the kinematic condition (condition of no normal flow) and the dynamic condi- 

tions (the normal stress coincides with the external pressure and tangential stress is absent) must be satisfied. 
For a heat-conducting mixture, in addition, conditions for temperature must be specified on the rigid walls 

and free boundaries. 
S h o c k  Waves .  If the first phase is an inviscid incompressible fluid (spherical stress tensor), flows with 

strong discontinuities are possible. At a strong discontinuity, the equality of the mass concentrations, mass 
flux, and momentum must be satisfied: 

[/32]0 = 0, [p(D - U)]D = O, [p(D - u) 2 +P]D = 0. (1.20) 

Here the square brackets denote an operator that determines the jump of the corresponding function at the 
shock wave, D is the velocity of the shock-wave propagation, and u is the velocity of the mixture normal to 
the shock-wave front. 

For a perfect gas, the specific energy can be expressed as 

u~/2 + p~ + C~T = u2/2 + pv + (Cv/R)pv2. 

Here and below, we assume that  Cv =/~2Cv2 and T = 7"2 in the case A and Cv =/31Cvl + fl2Cv2 in the case 
B; the specific volume v is defined by Eq. (1.3). 

The  law of conservation of energy at the shock wave is written as 

[1 Cv (v- j31vl )p]  = - v e .  (1.21) (D - u) ~ + pv + ~ 1) 

Here 1/v is the density of the mLxture past the shock-wave front, e is the energy loss (due to some factors, 
for example, chemical processes) per unit volume of the mixture  after passage through the shock wave. 

From the jump conditions (1.20) and (1.21), we deduce a shock-adiabat equation. For heat-non- 
conducting media and a perfect gas, it has the form 

1 v - /31vl  1 v0 - /31vl  (1.22) 
- -~  (vo - v ) p  + ~ P ' ~ - I  = -~ (vo - v)po + " y - 1  po - ev .  

2. A P P R O X I M A T E  F O R M U L A T I O N S  

A p p r o x i m a t i o n  A s s u m i n g  Smal l  V o l u m e  C o n c e n t r a t i o n  o f  t h e  G a s  in  t h e  M i x t u r e .  We 
assume that ,  at the initial time, the mass concentration of the gas in the mixture/32 = 52 is constant and 
5 << 1. Since the mass concentrations in a particle are conserved, the value 5 remains constant for subsequent 

times. 
Assuming that the components  of the mixture are not  heat-conducting, we set v = vl (1 - 5 2  -~-520), 

2 t U = 5 U ' ,  t = (~t t,  Tij  -~ 52T  ! G = 5 2 a + l G  t, T1 = 52aT{, T2 = Y~, e 0 = 5 e2, a n d  el = 52e~. He re  cr = 0 or  i j ,  
a = 1, depending on the properties of the first phase. 

Assuming that the gas is perfect and using the equation of state pv2 = RT2, (1.3) and the laws of 
conservation (1.12), (1.13), (1.15), and (1.16), with accuracy up to terms of the second order in 5, we obtain 

(primes are omitted):  

00 
Op = pxRT2, O--t - V .  u = 0; (2.1) 

Ou 1 52~ 
+ - -  ~Tp . . . .  d i v  r + f ;  (2 .2)  

0t Pl Pl 

C v 2 p l  - ~  + p ~  �9 u = 0; (2.3) 
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0T1 
Cvl ~ - G = 0. (2.4) 

Equations (2.1)-(2.3) together with initial data  and boundary  conditions are used to obtain the velocity field, 
the pressure field, the temperature,  and the specific volume O. Equality (2.4) defines the temperature of the 
first phase. 

R e m a r k  9. In the case of a viscous fluid, the stress tensor deviator depends linearly on the derivatives 
of the velocity with respect to spatial variables, and therefore, o- = 1. On the right side of (2.2), the term 
proportional to 52~ is retained in order to take into account the smoothing properties of viscosity and avoid 
difficulties in formulating the boundary conditions. 

If tangential stresses are absent (spherical tensor), then, according to Remark 3, the flow is isentropic 
and system (2.1)-(2.4) is considerably simplified. To describe the flow, it suffices to use the law of conservation 
of mass [the second equation in (2.1)], the law of conservation of entropy (1.19), and the law of conservation 
of momentum (without body forces). Within the framework of the given approximation, we obtain 

00 0 
- v . , ,  = o,   (po ) = o; (2 .5)  

Ou 1 
~ -  + pl ~7p 0. (2.6) 

According to (2.4), the temperature of the fluid is constant.  The temperature of the gas in the mixture is 
determined from the equation of state 0p -- plRT2 . Relation (2.3) is a consequence of the equation of state 
and formulas (2.5) and (2.6). 

In flows without tangential stresses (the first phase is an inviscid incompressible fluid), shock waves 
are possible. At a jump, the conditions of equality of mass and momentum fluxes (1.20) are satisfied with 
accuracy to terms of lower orders in 6 if 

(0o - O)V = u - uo, P - Po = p i ( u  - uo)V, (2.7) 

where V = 6-1 D. 
Within  the framework of this approximation, from the shock-adiabat equation (1.22) we obtain 

((7 + 1)0 - (7 - 1)00)p = ((7 + 1)O0 - (7 - 1)0)p0 - (7 - 1)e/2. (2.8) 

Using relations (2.7), we'eliminate the functions p and 0 from the shock-adiabat equation and obtain the 
following relation between the shock-wave velocity V and the velocity of the gas u: 

20opl~ 'V ~- - ( ( 7  + 1)Pl u2 _ ~'7- l e )  v - 27Pou = O. (2.9) 

Converting to the initial (without primes) variables and taking into account that  a2 = 620, we obtain 

7 1 
e ) D  - 2 P2---~~ c ~ p l  = 0, (2.10) 2 20uD 2 -  ((7 + 1)u 2 

where Co 2 ---- 7Po/P2o is the square of the velocity of sound in the gas. For e = 0 (no heat exchange between 
the phases), we have 

16 P20 2̀% 1/2 "% o.0 0  j. 
4c~20 (7 + 1) 2 Pl 

For P2o/Pl  << 1, the last formula becomes 

D = (7 + 1)u/(2a20). (2.11) 

If, in addition, u 2 >> (7 - 1)e/(2(7 + 1)pl), then from (2.10) we have the approximate relation 

2 ( 7 - 1 2 )  (2.12) 
~ (7+1)-  }71 Z 

R e m a r k  10. Within the framework of this approximation, the contact discontinuities in the mixture 
are fixed. 
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A p p r o x i m a t i o n  o f  S t r o n g  S h o c k  W a v e s .  In accordance with the shock-adiabat equat ion (2.8), 

0 --* 00(7 - 1 ) / (7  + 1) or P2 --* P20(7 + 1)/(7 - 1) as p --+ co, because P2 = 62pl /0 .  We assume tha t  pas t  the 
shock-wave front (in its neighborhood) 

P >> 1, 0 = 7 --_____! 1 (80 - 0% O' << 1. 
P0 3 ' +  1 

Let L be the characteristic linear dimension. We introduce dimensionless variables by the equalities 

X ' = L ,  t ' =  1 , P/-~'t, ( 7 -  1)02 
Z V ; = + 1)20 pop', 

V =  ~ P ~ ~  e 002 
V Pl -- (7 + 1) 28 poeo. 

O0 t P ~  0 ~, 
- y + l  ~/ Pl 

Taking into account  tha t  

0_~ " ? -  10o ' 
V + I  

OoPo 8oPo 
p ~- p' ,  V p  ~- - -  V'p ' ,  

~/+  1 L(7 + 1) 

from system (2.5), (2.6) we obtain (primes are omit ted)  

Pt + p ~ 7 .  u = 0, u~ + Vp = 0. (2.13) 

Letting P0 = 0 in the equations of conservation of m o m e n t u m  in (2.7) and the ( V - u )  diagram (2.9), as is 
customary in the theory of strong shock waves, we obta in  the following relations at the jump: 

p = uV, 2 u V  = u 2 - 2e0. (2.14) 

In physical variables, the second equality in (2.14) coincides with formula (2.12). 

R e m a r k  11. The  law of conservation of mass  in (2.7) serves as the boundary  condition for the  function 

8'. Using (2.14), we write it in the form (7 - 1)8' = 2eOo/p. 

R e m a r k  12. Conditions (2.14) at the shock wave can be written as 

p = uV,  u2 /2  = p + eo. (2.15) 

According to [2], the flow of the mixture can be t rea ted  as flow of a weakly compressible polytropic gas (the 

adiabatic exponent  is much larger than unity) with phase transitions at  the shock wave (at e ~ 0) due to 

physical processes such as endothermic combustion. 
C o m p a r i s o n  w i t h  E x p e r i m e n t .  Bakanova et al. [3] give experimental  da ta  for the shock-wave 

velocity D as a function of the flow velocity of the medium u for powders of molybdenum, tungsten,  copper, 
and aluminum. I t  follows from the diagrams presented in [3] that  this function can be considered linear 
( D  = au + b) over a fairly wide range of velocities. Below, we give the equations (from [3]) of (D  - u)- 

diagrams for each powder  and the corresponding formulas (2.11) for various values of the porosity m,  which 

is related to the volume concentration by the formula a2 = ( m  - 1 ) / m .  

For m o l y b d e n u m  powder, 
Dexp = 2.05u -b 0.03 and D = 2.66u for m = 1.82 and 0.58 ~< u ~< 2.31, 
Dexp = 1.58u - 0.07 and D = 1.77u for m = 3.1 and 0.64 <~ u ~ 3.21. 

For tungsten powder, 
Dexp = 1.97u + 0.13 and D = 2.68u for m = 1.81 and 0.52 ~< u ~< 1.98, 

Dexp = 1.48u - 0.11 and D = 1.67u for rn = 3.55 and 0.61 ~< u ~< 2.86. 

For copper  powder,  
Dexp = 1.82u + 0.21 and D = 2.52u for m = 1.91 and 0.6 E u ~< 2.44, 
Dexp = 1.62u + 0.06 and D = 1.81u for m = 2.98 and 0.64 ~< u ~< 2.73. 

For a luminum powder, 
Dexp = 1.85u + 0.2 and D = 2.39u for m = 2.01 and 0.65 ~< u ~< 2.97, 

Dexp = 1.59u - 0.05 and D = 1.78u for rn = 3.01 and 0.67 ~< u ~< 3.16. 
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Here Dexp is the shock-wave velocity obtained experimental ly  and D is the  corresponding velocity obta ined 

from (2.11). Exper imenta l  (D-u )  diagrams were p lo t ted  using the ou te rmos t  points of the specified ranges 

of velocities. The  unit  of measurement  for the velocity is 1 km/sec.  

These da ta  show tha t  the approximation of s t rong shock waves is adequate  for describing the dynamics  

of powder media  wi th  shock-wave velocities comparab le  with the velocity of sound in a metal. 

R e m a r k  13. The  one-dimensional sys tem (2.13) Pt + pus = O, ut + Px = 0 is linearized if a = u 

and ~ -- 2 v ~  are chosen as independent variables, and t = t(a,  ~) and x = x (a ,  ~3) axe chosen as unknown 

quantities: xa + /~ t3 /2  = 0 and x~ + ~ ta /2  --- O. According to (2.15), in the plane (a,/3), the shock-wave 

equation has the fo rm [a[ = V/2(32 + 4e0)/2 or j3 -= v/2a 2 - 4e0. At the  shock, the following condit ion must 

be satisfied: " 

ta -t- ~ t ~  4a" 

If we introduce the s t r eam function x = ~ / 2 ,  t = - ~ a ,  it satisfies the  equation of the membrane:  g'aa - 

= 0 .  

3. P U L S E D  C O M P R E S S I O N  O F  A F I N I T E  M A S S  OF A M I X T U R E  

F o r m u l a t i o n  o f  t h e  P r o b l e m .  Let, at the initial t ime t = 0, a motionless mixture occupy the  volume 

0 <~ r ~< 1. We assume tha t  a shock wave propagates  f rom the boundary  r = 1 to the center of s y m m e t r y  r = 0 

and the position of the front is given by the equalities r -- 1 - R(t)  and R(O) = O. We assume tha t  the flow 

past the shock-wave front is described by the one-dimensional system (2.13) with boundary conditions (2.15). 

To describe the mot ion  of the medium taking into account the characteris t ic  features of the problem,  it is 

reasonable to introduce the new independent variables 7" = R(t) ,  and ~ = (1 - r ) / r  and let R'( t )  = q(v)/v/-~, 
u(r, t) = -q(~ ' )V(~,  T)/V/'~, and p(r, t) = P(~, v ) / v .  In the new variables, the one-dimensional sys tem (2.10) 

becomes 

01n P ~ cOlnP cO (r~V) = 1; (3.1) 

0 O__O_V - q2 cO 
rq ~ (qV) - q2~ cO~ -~ V + ~ P = 0, (3.2) 

where r = 1 - ~'~, and  the geometric parameter  ~ = 0, 1, and 2 for plane,  cylindrical, and spherical waves, 

respectively. 
At the shock wave, the following jump relations must  be satisfied: 

q2y  = P, q2V2/2 = P + e0r (~ = 1). (3.3) 

The boundary  r = 1 is t rea ted  as a fixed rigid wall: 

V = O  

or the interface between the medium and vacuum: 

P = O  

(~ -- 0), (3.4) 

(~ -- 0). (3.5) 

The flow of the  medium depends strongly on the method of ini t ia t ion of the shock wave. Therefore, 

in the domain 

H =  {(~,v): 0 < ~ < 1,v0 < r < 7"1}, 

with 0 < To < r l  < 1, we consider the family of problems (3.1)-(3.4) or  (3.1)-(3.3), and (3.5) with the initial 

da ta  

q = q0, Y = V0(~), P = P0(~) (~ = ~0). (3.6) 
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The initial da t a  must be compatible with boundary, conditions (3.3)-(3.5): 

qo2V0(1) = P0(1), q2V02/2 = P0 + eor0; ( 3 . 7 )  

Y0(0) -- 0 or P0(0) = 0. (3.8) 

The compatibility conditions (3.7) define the initial da ta  for the function q(T). 
For the known function q(~-), the law of motion for the shock-wave front is determined by solving the 

Cauchy problem 

v/-R(t) nt(t) = q(n(t)), R(to) = r0. (3.9) 

The aim of the further investigation is to determine the class of initial data  (3.6) for which it is possible to 
write approximate solutions of the problems formulated above in the limit To --~ 0. 

System (3.1)-(3.3) with boundary conditions (3.4) or (3.5) admits the Variational  Formulation. 
energy integral 

1 

0 

(this can be verified by differentiation with respect to v) with the constant E calculated from the initial 
da ta  (3.6). 

Variational Principle. The solutions of the equations of motion for a continuous medium (3.1)-(3.3) 
and (3.4) or (3.5) and (3.6) in the domain H coincide with the extremals of the action functional 

"rl 

S(q, V, P) .= / L dr 

-co 

with the Lagrangian 
1 

q q 
0 

in the class of functions satisfying the initial data (3.6), the constraint equation (3.1), and the additional 
constraint V ---- 0 for ~ -- 0 in the case of boundary condition (3.4). 

Indeed, variation of the functional S with respect to q yields the energy integral. Let 

[ 1 -- rV+l ]  
P = e x p ( - r - ~ g ~ ) ,  Y = r  -~ ( v g ) z - ~ g ~ + 7 ~ - - ~  , (3.11) 

so that  the continuity equation (3.1) is automatically satisfied. The initial da ta  (3.6) will be satisfied if for 
v = v0 we set 

t 1 -- r~ +1 
g = go(~), ~'og~ = r~Vo + ~go - go r0(~ + 1)' (3.12) 

where 1 

r0(r ---- 1 - ~-0r go(~) = / r~) In P(r d~, 
/ *  

and obtain q0 from the compatibility conditions (3.7). Boundary condition (3.4) will also be satisfied if we 
put 

~'g = ~'0g0 

From representation (3.11) we have 

5P = -r -~Phg~,  

(~ = 0). (3.13) 

= r - (3.14) 
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Varying the action functional with respect to V and P ,  taking into account the representation (3.14), 

and assuming that  5g(~, r0) = 5g(~, ~'~) = O, after integration by parts  we obtain the following equation in 
variations: 

v~7"9 07" v ~  ~q2 ~ + "~- (~g(~, r )  d r  d~ 
II 

vl  ~-1 

/ - ~ -  /v/-V[P(1,7")-q2V(1,v)]hg(1,7")g~r. (3.15) = - P(O, v)hg(O, v) d7 + -~- 
~'o 1"o 

This, in view of the arbitrariness of 5g(~, r) and 5g(1, ~'), results in Eq. (3.2) and the first of the conditions 
(3.3). If 5g(O, r) is arbitrary, then (3.15) implies boundary  condition (3.5) [in the case of boundaxy condition 
(3.4), Eq. (3.13) yields 5g(O, r )  = 0]. The  second boundary  condition in (3.3) follows from the energy integral 
(3.10) af ter  differentiation with respect to ~'. Thus, the variational principle is proven. 

R e m a r k  14. In what follows, we shall seek solutions of problems (3.1)-(3.6) tha t  are regular for 
v0 --+ 0. Therefore,  the initial da ta  cannot  be arbitrary. From (3.11) with v0 --+ 0, we obtain P0 = exp ( -got )  
and V0 = go - ~g0~ + ~, letting v0 --* 0 in (3.12) we find tha t  (~P0)' = poV~, and from (3.7) and (3.8) in the 
limit r0 ---* 0 we have V0(1) = 2, P0(1) = 2q02, V0(0) = 0 or P0(0) = 0. The initial value for q is determined 
from the energy integral in the limit 7"0 -+ 0 using the given constant E .  

A p p r o x i m a t e  So lu t ions .  For short times, the flow can be considered plane-parallel because r ~ 1. 

The constant  e0 can be set equal to zero. For e0 = 0, problem (3.1)-(3.4) has the stat ionary solution [2] 

q2 ~2U2 q2 3 
U2/3(U - -  1)-I/2(3 -- U)5/6 ---- ~--122/3' P ---- 2 U - I '  ---- ~ E, 

where U = V/~. The law of motion for the shock-wave front is defined by the equality R(t) -- 
3.4-2/3EU3t 2/3 ~_ 1.19EW3t 2/3. We note that P(1) -- 3E/2 and P(0) -- (3E/4)42/3. Approximate so- 
lutions of problems (3.1)-(3.4) with initial data of the form (3.6) are also given in [2]. 

Equations (3.1) and (3.2) have no stationary solutions satisfying boundary condition (3.5) and bound- 
ary condition (3.3) (for e0 -- 0). Therefore, hereinafter we construct approximate solutions that give averaged 
values of the velocity and the pressure at sections ~- = const. We consider a family of functions g(~, p) that 
depend on the vector parameter D = (#1,-.., #k), and, in accordance with (3.11), we set P(~, D) -- exp (-q~) 
and V(~, ]~) -- g - ~q~ + ~. With this definition of P and V, the equation of continuity (3.1) is automatically 
satisfied. In addition, we assume that 

g(0,/~) -- V(0, D) = 0 or P(0,/~) -- 0.. 

The variations 5g = Vpg .  5l~ of the functions g are not finite in time. Therefore, we consider a sequence of 
variations of the form 5gn = ~n(r)hg(~), where ~n(w) are smooth functions that  vanish at v -- v0 and ~" -- rl 
and ~n(v)  --* 1 for v0 < r < 1. Substituting 5gn into formula (3.15) and assuming that  the function q is 
constant,  in the limit n --~ co, after integration by parts, we obtain the equality 

1 

3 q2 / VVl~gd~ = / ( q 2 ~ V -  P)Vl~gd~, (3.16) 

0 

which is valid due to the arbitrariness of 5p. Thus, we have the following approximate formulation of the 

problem: it is required to find the parameters D and q from system (3.16) and the energy integral (3.10). 
In the simplest case V =/~1~ and P = p2~ ~1-1, the corresponding solution has the form [2] #l  = 3/2, 

#2 -- E ,  and q02 -- 8E/9 .  The law of motion for the shock-wave front is given by the formula R(t) = 
21/3E1/3t2/3 ~-- 1.26E1/3t 2/3. One should expect that  the approximate solutions constructed by the method 

proposed above give satisfactory approximations in the neighborhood of v - 0. To take into account the 
dynamics of the process and the flow geometry, we consider a family of functions g(~, T )  with the vector 
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function T ( r )  = (Tz ( r ) , . . . ,  Tk(r)) and define the mappings T --* P(~, T),  T ~ V(~, T,  rT ' ,  r )  by equalities 
(3.11). This defines the Lagrangian 

[E r(ve~ 1) (rV+l ' L = v/'rM(q, T, rT', r) + --q- - 1)] 

where 1 
 (q-y 

M = -  - P d ~ .  q r k 2  
0 

Variation of the action functional with respect to q gives the energy integral (3.10), and variation of it 
with respect to T leads to the following system of ordinary differential equations: 

d OM 1 0 M  OM 
d--~ ~ + 2r  0T~[ - - ~  (i = 1, 2 , . . . ,  k), (3.17) 

which degenerates at r = 0. Therefore, the initial data for this system must be determined in the process of 
solution. To do this, we use Taylor's formula M = Mo(q, T) -4- rN(q, T). T' + O(r  2) and, similarly, we write 
the energy integral (3.10): 

Wo(q, T) + rW(q, T) + vg(q,  T) . T' = E + O(r2). (3.18) 

Substituting representation (3.18) into the Euler equations (3.17), we obtain 

3 N i O M o  d 
- + Ni  = ( i  = 1 , 2 , . . . ,  k ) .  

From the last equality and the energy integral it follows that  the solution of system (3.17) is regular at r = 0 
if 

3 0 
Wo(q,T) = E, -~ Ni(q,T) = -~i ll/Io(q,T) (i = 1 , 2 , . . . , k ) ;  (3.19) 

d Wo(q,T) + g(q ,T) .  T' + W(q,T) = O, 
dr (3.20) 

d [3 0 Mo(q,T) + Ni(q,T)] = 0 (i = 1,2, k) ~v ~ N i (q ,T ) -  ~ . . . ,  

at r = 0. System (3.19) defines the initial data  for T and q, and system (3.20) gives initial data for T '  [the 
value q'(0) is calculated from the energy integral]. 

As a result, we obtain the following approximate formulation for the problem of pulsed compression of 
a finite mass of the mixture: it is required to find a solution of the system of ordinary differential equations 
(3.17) with initial data defined by systems (3.19) and (3.20). 

R e m a r k  15. For g = 0, problem (3.19) coincides with the problem of finding steady solutions from 
system (3.10) and (3.16). A solution of system (3.10) and (3.16) is a steady solution of the Euler equations 
(3.17) if e0 -- 0 [in this case, the energy integral is explicitly independent of r and it follows from (3.20) that  
q'(0) = 0 and T'(0)  = 0]. 

As an example, we consider a family of approximate solutions in the following form: V = T1 (r)~ and 
P = exp {T2(7") + [Tl(r) - 1)] In ~} for v = 0. The function M that defines the Lagrangian has the form 

M = ~4 [9(T1 - rT2') 2 + 247"T~(T1 - rT~) + 17r2T212] - ~T1 eT2 . 

Another kind of approximate solutions is obtained under the assumption that T1 - r0 << 1 and, for r E 
(r0, rz), the velocity and pressure differ slightly from some averaged distributions V(~) and P(~). Therefore, 
let 

1 - r v + l  ] 
P=exp[r-~q'(~)]' V = r - ~ [  q(~)-~q'(~)+ ; '~7~)1" 

In this case, the continuity equation is satisfied. 
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Assuming that V = 0 at ~ = 0, from the equation in variations, we obtain 

- ~  -~  - ~  --~- P d~" = V~  q + - -  q~ -- Tq' V 

"to "to r o  

v l  

= / 
,r o 

Dividing these equalities by rl - ro and taking into account the continuity equation, in the limit r0, vz ~ v, 
we obtain the system 

r_VP(r~V)~ = (~p)~ _ ~,v~ p In P; (3.21) 
r 

P c  = v @ ) r  - - (3.22) 
with boundary  conditions 

P = q2V (~ = 1), V = 0 (r = 0). (3.23) 

Relation (3.21)is  the continuity equation (3.1). 
System (3.21)-(3.23) together with the energy integral (3.10) defines the approximate solutions of the 

problem of pulsed compression of a finite mass of the mixture with boundary conditions (3.4). 
For ~, = 0 and e0 = 0, the solution of the problem (3.21)-(3.23) is self-similar. Generally, the variable 

v enters into the boundary-value problem as a parameter. The existence of the solution is not  obvious. 
This work was supported by the Russian Foundation for Fundamental Research (Grant Nos. 98-01- 

00660 and 98-03-32328). 
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